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COMMENT 

Some probabilistic aspects of fractal growth 

A A Tsonis 
Department of Geological and Geophysical Sciences, The University of Wisconsin- 
Milwaukee, Milwaukee, WI 53201, USA 

Received 4 March 1987 

Abstract. Non-equilibrium growth models generate fractal structures that mimic 
phenomena observed in nature. In this comment simulations indicate that these generated 
structures may also be the most probable events. 

Non-equilibrium growth results in structures which appear random and amorphous. 
Dielectric breakdown and dendritic growth are two very familiar examples of non- 
equilibrium growth. Lately, the introduction of simple non-equilibrium models and 
the utilisation of fractal geometry [ 11 has led to a good understanding of the morphology 
of such growth. We now know that there is ‘order’ in those disorderly appearing 
structures. This order is called scale invariance. A scale-invariant structure is an object 
whose statistical properties are unchanged under a change of spatial length scale. 
Scale-invariant structures are also called fractals because their Hausdorff -Besicovitch 
dimension is not an integer. In other words, the total mass of a fractal object, M, 
scales with some characteristic length, 1, as M ( l ) a l D  where D is not an integer. The 
existence of D indicates that there is a relation between properties at different scales 
and thus ‘order’. Non-equilibrium growth models were initially proposed by Witten 
and Sander [2], according to which structures with a well defined fractal geometry are 
generated by a simple diffusion-limited aggregation ( DLA) process in which particles 
are added one at a time to a growing cluster via random walk trajectories. This model 
generated a great interest and led to the development of a variety of related models 
that simulate phenomena such as dielectric breakdown [3], lightning [4], viscous 
fingering [ 5 ] ,  the development of morphology in biological systems [ 6 ] ,  dendritic 
growth [7], etc. The type of model which is of interest in this comment is the dielectric 
breakdown model (DBM) of Niemeyer et a1 [3]. According to this model, at each step 
the electric potential is determined for all perimeter sites of the evolving discharge 
pattern. Then every perimeter site is associated with a ‘growth’ probability which is 
proportional to the local electric field. The assigned probabilities thus determine at 
each step a probability distribution. Given this probability distribution a site is selected 
randomly and added to the evolving pattern. The above procedure is then repeated 
until a large structure is obtained. The above simulations which are performed on a 
square lattice placing the growth site at the centre can also be modified to simulate 
lightning in the atmosphere [4]. These simulations are carried out on a strip geometry 
where the initial growth site is placed at the centre of one side of a rectangular box. 
An example of such a simulated lightning is shown in figure 1. The structure is fractal 
with a fractal dimension equal to 1.36 [4]. 
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Figure 1. Example o f  computer-generated lightning. This dielectric breakdown simulation 
was carried out on a 250 x 150 rectangular lattice, where the initial growth site was placed 
at the centre of the top side. For more details see [4]. The structure consists of 736 points 
and its fractal dimension is 1.36. The vertical extent of this structure i s  150 lattice units. 

Since the model provides the probability of every site at each step one may calculate 
the probability of the whole structure by multiplying the probabilities which all the 
selected candidates were associated with. In general, if we assume that at the nth step 
a structure is made up from n points denoted as A I ,  A*,  . , . , A, which are selected 
in that order then the probability, P ( n ) ,  of this structure is given by 

P(n) = P(AI ,  A2, .  . . , An) 
= P(A,)P(A2)Al)P(A31A,A2).  . . P(AnJAIA2. .  . An- , ) .  

According to dielectric breakdown type models the tip of a line has the highest 
probability. Therefore, for model simulations on a strip geometry, a straight line is 
the structure with the maximum growth probability. In  other words a straight line is 
the most probable outcome of such a model. Such an outcome, however, is never 
achieved, just as we never see a straight line of lightning in the atmosphere. In a 
perfectly uniform atmosphere one would expect the breakdown to spread out in a 
straight line. However, because of noise in the system a growth instability will occur 
and irregularities will appear [7 ,8 ] .  In the atmosphere such noise can be density, 
temperature or humidity fluctuations. This noise is reproduced in the dielectric break- 
down type models via the random selection procedure at each step. No matter how 
small the growth probability of a site is, there is always a chance that that site will be 
selected. Thus, the evolving structure soon becomes very irregular. The interesting 
point, however, is that the irregular evolution of such structure is characterised by 
properties which are related at different scales and that all structures generated by 
such models have a reproducible fractal dimension. In view of the foregoing discussion 
the following question arises: are fractals more probable events? If  fractal structures 
are most probable events, then one would expect the chance of getting a non-fractal 
discharge pattern out of a DBM to be very, very small. A theoretical way to prove this 
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does not exist and to demonstrate this by simulating structures, until a non-fractal one 
is generated, is hopeless due to the probabilities involved. The best alternative is to 
‘cook up’ a non-fractal discharge pattern which consists of n points, ‘force’ the model 
to generate it and then compare it with a fractal structure which was normally generated 
by the model and which consists of n points as well. This means that if at each step 
the model does not select one of the candidates that fits the non-fractal structure the 
selection procedure is repeated until a point that fits that structure is selected. Such 
a non-fractal discharge pattern is shown in figure 2. It consists of, approximately, an 
equal number of ‘points’ as the fractal structure in figure 1 and its probability as a 
function of the step is shown in figure 3 by the broken curve. The full curve indicates 

Figure 2. A hypothetical non-fractal discharge pattern. This structure consists of 738 points. 
The vertical extent of this structure is 150 lattice units. The mass (number of occupied 
lattice sites) ( M )  of this structure scales with distance ( r )  from the origin as M ( r ) K r D  
where D = 1. Therefore this structure is not a fractal [ 13. 
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Figure 3. The probability of an evolving structure as a function of the step. The full curve 
refers to the structure in figure 1 and the broken curve refers to the structure in figure 2. 
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the corresponding probability for the structure in figure 1. As can be observed in figure 
3, the probability of the non-fractal structure is much, much smaller than that of the 
fractal structure and it becomes even smaller as the number of steps increases. After 
only 70 steps the probability of the fractal structure is greater by a factor of about 
lo4’. After 200 step this factor has become loso0. 

In view of the above results the following interesting questions may be posed. Are 
those differences observed because the generation of the non-fractal structure was 
‘forced’? Will those differences be observed if the model is forced to generate a given 
fractal structure (such as the one shown in figure l ) ?  These questions can be answered 
if we answer a more general question. Obviously, a given structure may be generated 
in many different ways (the one we force will be one of the possible ways). Does the 
total probability, P(n), of a given structure depend on the order in which it is built 
up? Experimentation with the structures in figures 1 and 2 indicates that when a 
structure is ‘young’ ( n  s 30) significant differences in P(  n )  may be observed. These 
differences diminish rapidly and for a given structure and a given n b 70, P( n )  has a 
reproducible value which does not depend on the order in which the structure is built 
up. Therefore, the probability of the fractal structure will always be infinitely higher 
than the probability of the non-fractal structure, no matter how these structures are 
generated. 

The above findings are confirmed by additional experimentation with fractal and 
non-fractal structures. Apparently, with n points one may produce a great number of 
different structures. Some of them will be more probable than others. From the more 
probable ones the most probable will most likely be generated. The above results 
demonstrate that the ‘chosen’ structure will be a fractal structure. 

Basically, the results reported above are related to thermodynamics. At a finite 
temperature, T, the free energy is minimised. The free energy, F, is defined as 
F = E - TS where E is the energy and S is the entropy. Thermodynamic probabilities 
are proportional to exp( - E /  kB T )  and the entropy is proportional to the number of 
different configurations for the same energy. For larger structures the entropy is larger 
and thus the most probable solution which corresponds to lowest energy (in our case, 
a straight line of lightning) is not actually found. Apparently, very low probability 
solutions (ordered states) will not be found either. The larger variety of configurations 
in energetically less favourable states makes disordered states (fractals) appear more 
often. Only for small structures does one sometimes see the lowest energy state reached 
at a finite temperature. An interesting question which remains open is whether the 
numerical probabilities which are calculated from the model can be quantified by 
suitable power laws. Work in this area is in progress. 

I thank James B Elsner for computing assistance. 
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